
Improve the Debian Boot Process

Google Summer of Code 2006

State-of-the-Art in the Boot Process

First Deliverable

student : Carlos Villegas (Carlos.Villegas at nuim.ie)
mentor : Petter Reinholdtsen (pere at hungry.com)

June 20, 2006

1 Introduction

The boot process of unix-like operating systems has been based, until recently,
on the init script system used in System 5 [20]. This process is commonly called
sysvinit is dominated by the rc script which calls all the processes required for
a determined runlevel one after the other in a prespecified order. The order
given to this scripts is conservative as there is not information of what scripts
are actually needed to run before. This whole process doesn’t tend to use all
the CPU nor disk access capacity as just one script run at the same time.

The Debian linux distribution uses currently the sysvinit process although several
approaces tried by several developers have shown that its boot process can
be faster. One good example is given by the results presented by Margarita
Manterola at DebConf6 [6]. Distributions like Ubuntu seem to be already
on their way to faster booting with Sun SMF self-heal services and parallel
execution in NexentaOS [12] and SUSE Linux already implementing LSB-compliant
parallel execution of init scripts [18]. Thus, the need to improve the current
process has been identified and different approaches are being taken to solve it.
Parallel processing is an option that has been considered but the dependencies
between the programs is a constraint. With dependencies taken into account like
by making init scripts LSB-compliant, parallel execution could be implemented
in Debian. At the end of the day, a 60% faster booting time could be obtained
according to Petter Reinholdtsen [17], which would make a big difference for
high availability systems.

In order to do this, we aim at detecting hotspots and implementing the most
promising ones. With this first deliverable, the first ”hotspots” are identified”
together with the current state-of-the-art in the boot process. Afterwards, the

1

hotspots will be iteratively applied with consideration on LSB (Linux Standard
Base) compliance and backwards compatibility.

Furthermore, initscripts-ng.alioth.debian.org/soc2006-bootsystem is the project
webpage published to promote the project and track its development. Additionally,
a blog at bootdebian.blogspot.com/ to provide information of the day-to-day
progress. Besides, discussionis held through the alioth initscripts-ng mailing
list [2] and the debian’s IRC in the sysvinit channel [7].

In the first section of this document, we outline some of the identified hotspots.
They are ordered by their possible effect to the decrease the boot time. The
second section has as an objective to describe the state-of-the art in the boot
process in unix-like distributions. They ordered by the program/algorithm used
with subsections for its implementation in particular distributions.

2 Hotspots

The following hotspots have been identified so far:

1. Use dash or internal functions in the init scripts – The use of dash
can reduce the boot time around 6 seconds[6] as it is a smaller program
than bash. Rewritting slow shell scripts to use internal function instead
of external programs is another option.

2. LSB-compliance and reordering bootscripts– LSB compliance in
the init scripts can be used to reorder the scripts as shown in the SUSE
boot with insserv [18]. Lintian rules should be considered as well during
the implementation. Just by reordering some processes around 2 seconds
could be gained[6].

3. Parallel execution of boot scripts – currently can be activated setting
CONCURRENCY=startpar in /etc/default/rcS but there is still the need
to efficiently reorganize the scripts;

4. Preloading – having parts of the program already in memory can improve
execution speed. Nevertheless, with parallel execution, preloading should
be adjusted not to hinder other programs memory requirements [19] (solved
with dynamic preloading – readahead),

5. Set up the hardware clock in the background – around 6 seconds
could be gained[6].

6. Set up the network in the background – around 2 seconds could be
gained[6].

7. Remove depmod from the boot process – around 2 seconds could be
gained[6].

8. Improve CPU use when starting the desktop manager,

9. Make the boot less verbose.

2

http://initscripts-ng.alioth.debian.org/soc2006-bootsystem/
http://bootdebian.blogspot.com/

3 State-of-the-Art in boot processing

Several linux distributions are trying to make their boot process faster and they
have taken different approaches. Additionally, there is a group of enthusiast
that make code to improve the boot process. In this section, we’ll mention
the different approaches found for improving the boot process and consider the
implementation in some unix-like distributions.

3.1 sysvinit (Debian/Fedora)

Many unix-like distributions use the System V init (sysvinit) script architecture
as it is quite powerful and adaptable due to is modular design. It works mostly
well with the software packages concept although it can be messy to keep the
execution of the scripts on the right order[20].

It is composed of three modules:

/sbin/init – the System V init,

/sbin/rc – with the symbolic link farms in /etc/rc?.d/* and

/etc/init.d/* – the System V-like system init scripts pool.

Besides the sysvinit concept has manages different system profiles, which are
called runlevels. The runlevels are:

0 – system halt,

1 – single-user mode,

2-5 – normal modes,

6 – reboot system and

S – system startup.

The runlevel S is only used at startup and then it switches to another runlevel
from 1 to 5. The use of runlevels 2 to 5 varie from vendor to vendor, Debian using
runlevel 2 as default[14]. On the other hand, SUSE linux makes a difference
between runlevels being:

2 – local multiuser mode without remote network (NFS, etc),

3 – full multiuser mode with network,

4 – not used and

5 – full multiuser mode with network and X display manager[18].

3

Debian

Debian uses sysvinit for the boot process with update-rc.d to manipulate the
symbolic link farm. Besides, the program invoke-rc.d may be used when a script
has to be run outside the bootprocess, e.g. package installation or removal
performed by maintainer scripts. This avoids services to be started just when
they should (like when they are not in the appropiate runlevel).

Nevertheless, update-rc.d cannot perform incremental changes such that, in
order to add or remove a script in a certain runlevel, it is necessary to specify
the complete setup.

Fedora Core 5 and future plans

Fedora seems to have a standard System V like init process but with added LSB
support. The latter is included via a program that can parse LSB standard
headers for start and stop levels called chkconfig. These dependencies are used
add them in the right order in the /etc/rc<X>.d directories and maintain
them, although priorities are not recomputed if other dependencies are added
or changed. [3]. The chkconfig command was inspired in the one present in the
IRIX operating system [1] and, in constrast with Debian’s update-rc.d, it can
be used as well as a runlevel editor.

There are plans to improve Fedora boot process by implementing a new one
based on D-BUS. The objectives are to:

• proper runtime dependency support,

• full backwards compatibility,

• full LSB support,

• service exposure via D-BUS and

• support for respawning services.

3.2 readahead (Ubuntu Dapper/ Knoppix)

readahead is a program used to improve the boot time when the RAM memory
is larger than 256 Mb [8] based on reading in advance one or more pages of a
file within a page cache [9]. It is used in some distributions like Ubuntu Dapper
and Knoppix.

3.3 startpar/insserv (SUSE 10)

The combination of startpar and insserv intends to provide parallel execution
during boot time by considering the dependencies. Startpar task is to start

4

runlevel scripts in parallel [10] while serializing the output. Insserv is used to
reorder the init scripts by considering comment headers on the scripts (LSB-
compliant) and calculating the dependencies between the scripts in the specified
runlevel [5]. It uses the concept of System Facilities (SF) and associates dependencies
to each one of them. The SF in the script is followed in the same line by the
SF or scripts it depends on. For example:

$remote fs $local fs nfs

indicates that the SF remote fs requires the SF local fs and the script nfs. It
may be noticed that a SF name is preceded by a $. Innserv writes down a file
that may be used with startpar to perform a parallel init script execution while
considering the dependencies.

The SuSE boot concept

The SuSE distribution implements the startpar/insserv combination to provide
parallel execution during the boot process. Besides, it also uses a preload script
which doesn’t seem to be active. A short description of the SuSE boot
concept is presented next.

The SuSE boot concept seems to be LSB-compliant such that the init scripts
have been moved to /etc/init.d. The boot process seems to be divided at least
in two phases being:

1. from boot time and

2. after system startup.

At boot time, the first boot level master script is /etc/init.d/boot. It has the
task to initialise the system: like doing a filesystem check and running hardware
init scripts specified in the /etc/init.d/boot.d directory. Afterwards, the local
commands are executed with the script /etc/init.d/boot.local.

After the system startup, the master level script /etc/init.d/rc takes control
and starts the scripts for the specified run-level.

Besides, with the differential link scheme,switching between run-levels is considered.
It uses the start and stop links of init scripts inside the run-level directories
(/etc/init.d/rc<X>.d). With the differential link scheme, just those scripts
that were not present in the previous run-level are started while only those that
are not present in the new run-level are removed. As a result, repetitive script
starts and stops are avoided.

If parallel execution is enabled, the init scripts are executed in parallel using
startpar. In order to know which programs should be executed first, the insserv
command creates some files with the dependencies before starting or stopping
the related process. This information is used by startpar to execute the scripts
in parallel while considering dependencies[11].

5

The default arguments for startpar in SuSE [10] at boot to

• (-p 4) have a degree 4 of parallelism,

• (-t 30) an individual buffer timeout of 30,

• (-T 3) a global buffer timeout of 3 and

• (-M) to have a make-like behaviour.

where the individual buffer timeout refers to the time for the buffer to be flushed,
while the global timout will flush the buffer of the script with the oldest output.
With the make-like behaviour, the appropiate dependency file will be used:
boot, start or stop.

On the other hand, insserv in SuSE writes the dependency information taken
from the scripts into the files: /etc/init.d/.depend.boot, /etc/init.d/.depend.start,
/etc/init.d/.depend.stop for the boot, start and stop dependencies, respectively
[5]. Besides, different to other ordering scripts, the scripts do not require an
extra flag to enable parallel execution [22].

3.4 pinit/prcsys(Mandriva)

Program to implement LSB compliance without mixing startup script output
and not modifying much the current startup script. It retrieves the services
that a determined init script enables and disables while considers if the program
should be executed in parallel. It doesn’t use the typical sysvinit SXX ordering
and, in order to keep a clean screen output, it stocks temporarily the output in
a file which is afterwards printed when the service startup is over [15]. It has
been implemented in Mandriva Linux [23]

3.5 rcorder (NetBSD/FreeBSD)

NetBSD init script system has an advanced init script system that was later
adopted by FreeBSD as well. Its /sbin/init is mostly the same as the one
inherited from 4.4BSD, and all the intelligence of the init script system is in the
/sbin/rcorder script [20].

What rcorder does, is to print out dependency ordering of a set of interdependent
files. It is specifically used for the init scripts by reading special keywords
(inserted inside shell comments) indicating their dependencies [13]. This program
will be run every boot time by the /etc/rc script twice to consider the scripts
in filesystems mounted at a later stage like the ones in network filesystems [16].
Thus, insted of calculating dependencies just when a new program is installed
like other scripts, rcorder does the ordering every boot time.

Moreover, rcorder dependency mechanism make it possible for third-party scripts
to be installed and added to the dependency tree at the appropiate start-up
point without difficulty [21]

6

On the other side, rcorder approach doesn’t make it easy to implement parallel
execution such that the NetBSD init script system doesn’t even attempt to
do that. Although the information for parallel execution is there a different
approach is required for parallel execution [20].

3.6 file-rc

This approach is similar to the standard sysvinit although, instead of using a
symbolic link farm (/etc/rc<X>.d/) for each runlevel, it uses a single configuration
file [23]. This file is in an easy-to-parse, tabular format. [20]

3.7 Solaris SMF (NexentaOS)

SMF stands for Service Management Framework and consists of a daemon that
takes care of managing the services (starting/stopping) while leaving init to take
care of the other tasks of booting the system [23]. The services are described by
an XML file and can include dependencies such that a service would bring up
all other services it needs. Nevertheless, as it doesn’t replacethe init, it requires
that everything be modified to run in the foreground and not daemonise [23].

Moreover, it’s licence is CDDL and not GPL-compatible.

3.8 Apple launchd

Apple’s approach is to replace the init and uses XML configuration files for the
services. It is not dependency based which means that services are started on
demand and kept running as long as they are needed. This means that if a
service requires another, it will wait until that other service starts.

The license is APSL and not GPL-compatible. It has even clauses that cause
issues if you even read the source code [23]

3.9 init-ng

Full replacement of sysvinit tool created by Jimmy Wennlund and designed to
increase the booting speed of unix-compatible systems by starting processes
asynchronously. [4]

It has a plugin architecture such that almost all the functionality is provided by
loadable .so modules. The plugins have features like restarting services should
they fail, setting resource limits or communications over dbus [23].

7

3.10 serel

Leni Mayo’s serel aims at reducing boot time by implementing a dependency
based init script capable of parallel execution. For dependencies, it uses the
need(8) concept (dinamically and statically) and should work out of the box
with RedHat 7 systems. [20]

The project seems to have been abandoned by the author in 2002.

4 Conclusions and Future Work

The boot process can be faster and promising solutions have been explored by
several groups. From the hotspots in Section 2 we will implement the most
promising ones and reorder the hotspots. The results will be presented in the
next deliverable together with a boot time benchmark of the debian releases from
woody to sid. With a better perspective of the problem and possible solutions
given by the brief state-of-the-art in Section 3 we should be in a better position
to improve Debian’s boot process.

References

[1] Chkconfig(8) man page in fedora core 5.

[2] Debian next generation initscripts project at alioth.
http://alioth.debian.org/projects/initscripts-ng.

[3] Fedora analysis. http://fedoraproject.org/wiki/FCNewInit.

[4] initng – next generation init system.
http://www.initng.org/wiki.

[5] insserv(8) manual.
http://man-wiki.net/index.php/8:insserv.

[6] Marga’s blog – parallel booting.
www.marga.com.ar/blog/index.cgi/debian/Parallel booting.html.

[7] #pkg-sysvinit at irc.debian.org.

[8] Readahead in knoppix.
http://unit.aist.go.jp/itri/knoppix/readahead/index-en.html.

[9] Readahead(2) – linux man page.
http://www.die.net/doc/linux/man/man2/readahead.2.html.

[10] startpar manual.
www.math.ucla.edu/computing/docindex/sysvinit-man-25.html.

[11] (suse 10)/etc/init.d/readme – the suse boot concept.

8

http://alioth.debian.org/projects/initscripts-ng
http://fedoraproject.org/wiki/FCNewInit
http://www.initng.org/wiki
http://man-wiki.net/index.php/8:insserv
http://www.marga.com.ar/blog/index.cgi/debian/Parallel_booting.html
http://unit.aist.go.jp/itri/knoppix/readahead/index-en.html
http://www.die.net/doc/linux/man/man2/readahead.2.html
file:www.math.ucla.edu/computing/docindex/sysvinit-man-25.html

[12] Ubuntu and smf.
http://www.calivia.com/blog/mike/solaris smf for ubuntu packages on opensolaris.

[13] Rcorder(8) in the freebsd system manager’s manual. July 2000.
http://www.freebsd.org/cgi/man.cgi?query=rcorder.

[14] rcs(5) man page in debian administrator’s manual. November 2003.

[15] Mandrake linux archives: cooker@mandrivalinux.org. October 2005.
http://archives.mandrivalinux.com/cooker/2005-10/msg00256.php.

[16] (freebsd/src/etc/rc script from freebsd. February 2006.
http://www.freebsd.org/cgi/cvsweb.cgi/src/etc/rc.

[17] Ideas for speeding up the debian boot process. January 2006.
http://lists.alioth.debian.org/pipermail/pkg-sysvinit-devel/2006-January/000542.html.

[18] Suse linux reference 10.1. April 2006.
http://ftp.opensuse.org/pub/opensuse/distribution/SL-10.1/inst-source/docu/en/reference en.pdf.

[19] Eric Brasseur. Linux optimization. May 2005.
http://www.4p8.com/eric.brasseur/linux optimization.html.

[20] Henrique de Moraes Holschuh. System init scripts and the debian o.s. In
3rd Debian Conference, June 2002.
alioth.debian.org/docman/view.php/30730/38/debconf2-initscripts-bkg.pdf.

[21] Luke Mewburn. The design and implementation of the netbsd rc.d system.
June 2001.
http://www.mewburn.net/luke/papers/rc.d.pdf.

[22] Petter Reinholdtsen. Ubuntu plans for init. February 2006.
http://lists.alioth.debian.org/pipermail/initscripts-ng-devel/2006-February/000251.html.

[23] Jane Weideman. Ubuntu plans for init.
https://wiki.ubuntu.com/ReplacementInit.

9

http://www.calivia.com/blog/mike/solaris_smf_for_ubuntu0packages_on_opensolaris
http://www.freebsd.org/cgi/man.cgi?query=rcorder
http://archives.mandrivalinux.com/cooker/2005-10/msg00256.php
http://www.freebsd.org/cgi/cvsweb.cgi/src/etc/rc
http://lists.alioth.debian.org/pipermail/pkg-sysvinit-devel/2006-January/000542.html
http://ftp.opensuse.org/pub/opensuse/distribution/SL-10.1/inst-source/docu/en/reference_en.pdf
http://www.4p8.com/eric.brasseur/linux_optimization.html
http://alioth.debian.org/docman/view.php/30730/38/debconf2-initscripts-bkg.pdf
http://www.mewburn.net/luke/papers/rc.d.pdf
http://lists.alioth.debian.org/pipermail/initscripts-ng-devel/2006-February/000251.html
https://wiki.ubuntu.com/ReplacementInit

	Introduction
	Hotspots
	State-of-the-Art in boot processing
	sysvinit (Debian/Fedora)
	readahead (Ubuntu Dapper/ Knoppix)
	startpar/insserv (SUSE 10)
	pinit/prcsys(Mandriva)
	rcorder (NetBSD/FreeBSD)
	file-rc
	Solaris SMF (NexentaOS)
	Apple launchd
	init-ng
	serel

	Conclusions and Future Work

